

Science in School

The European journal for science teachers

ISSUE 76 – February 2026

Topics Earth science | Events | General science |
Science and Society | Sustainability

Project Earth: empowering young people to build a better world

Becky Parker

Project Earth supports students to innovate for the planet with expert advisors and 'Pitch for the Planet'. Take part!

[Project Earth](#) is a charity to support young people and their teachers to genuinely contribute to tackling the climate and biodiversity crisis.^[1] It connects young people with a network of expert advisors^[2] who provide support and advice to help their ideas progress.

project earth
empowering young people to build a better world

Vision: Every young person has the knowledge, creativity, and ability to drive climate-positive change. The project shows students the potential of engineering solutions, and together with the AI Project Earth assistant, it helps them develop their project, research and presentation skills, and explore career options.

Mission: The project supports accessible, engaging, and high-quality sustainability experiences that empower students to take meaningful action and contribute to a sustainable future. Their creativity, fearless thinking and commitment will result in innovative ideas, hopeful optimism and insights into green careers and futures.

How it started

I had written to ask Prince William if he might establish a youth version of the Earthshot Prize, a global prize awarding 5 people each year for their exceptional contributions in the categories 'restoration and protection of nature', 'air cleanliness', 'ocean revival', 'waste-free living' and 'climate action'. He had replied in a really supportive way but was rather too busy to take it on himself, so I established [Project Earth](#). We are partnered with the Earthshot Prize. No doubt some of the wonderful ideas that students come up with could be finalists for the Earthshot Prize in future. Here are a few of the ideas generated in the pilot:

- Students have made a wristband air quality monitor.
- A group has developed a device to take methane out of barns.
- A student has devised a small-scale home wind turbine.
- Another student created a way to increase biodiversity around wind turbine bases at sea.
- A student team has developed a probe to monitor various factors affecting domestic compost production, such as pH level, temperature, humidity, and the concentrations of nitrogen, phosphorus and potassium ions. This will link to a website they have developed, which will notify a user how to improve their compost's health by telling them what could be added.

Students who engage in Project Earth feel energised and less anxious about the future because they are genuinely contributing to a more sustainable world and having their voices heard. Participation grew rapidly in the pilot in 2024 to 2025. This year, we are expanding our reach across the world and supporting thousands more students.

Three participants of Pitch for the planet 2025 from Rwanda, Spain and Turkey.

Image courtesy of the author

How does it work

Project Earth provides schools with a structured yet flexible framework that guides students to...

- ...identify local environmental challenges.
- ...design and prototype meaningful solutions.
- ...collaborate with industry experts, mentors, and scientists.
- ...present their ideas at regional and national showcases.

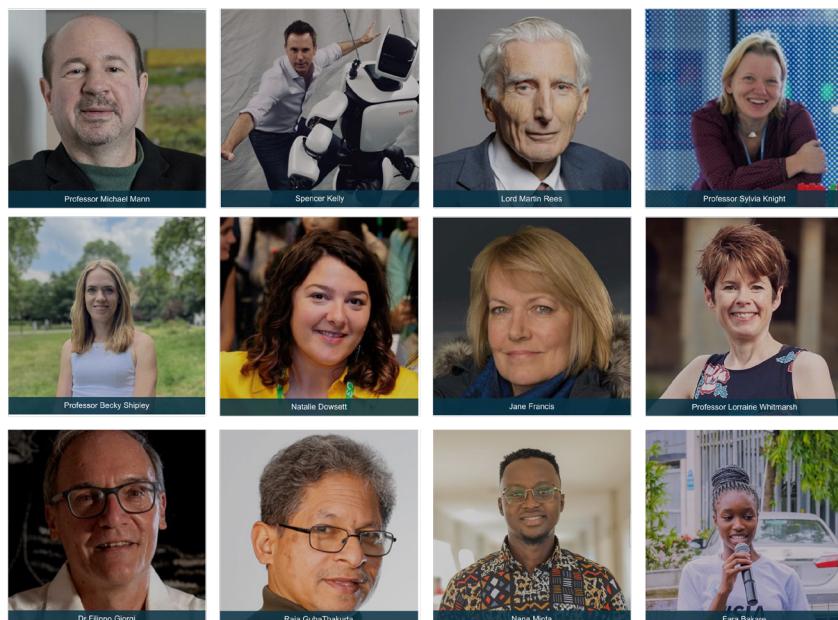
There are many ways that Project Earth can run depending on how your curriculum works. You can run it as a club, as an enrichment activity, or as part of a research or climate lesson. It is designed to allow students to work very independently.

A key and unique feature of Project Earth is the huge team of advisors. When a student submits a project on the website to get advice we connect them with a suitable advisor to help develop their project. If we don't have a suitable advisor, we find one to help. We have three main areas we support and encourage:

Technological innovation

We aim to provide a platform through which young people can present innovative technological concepts that can be harnessed to combat environmental challenges.

Social transformation


We aim to provide young people with the opportunity to develop and share ideas on how social and behavioural change can be utilised as a tool to help combat climate change.

Cultural exchange

We aim to empower young people to use creative storytelling to explore and share their cultural heritage in relation to the environment, thus facilitating a better understanding of how climate change is variously affecting communities around the world.

Project Earth AI assistant

We have a bespoke AI Project Earth assistant called Scout to help students. Unlike AI tools that do the work for students, Scout builds their capability to think critically and solve problems independently. It also highlights green careers and opportunities. The brilliant thing is that it can answer in a huge number of languages, making Project Earth accessible

Project Earth advisors - we have over 100 on the website.

Image courtesy of the author

across Europe and the world. Students who have tested it have said: “This is a brilliant tool to help improve your project by talking it through and receiving questions that you can use to develop your project further.”

Educational & environmental outcomes

- Students gain scientific literacy, systems thinking, project management, innovation skills, engineering insights, careers insights and confidence.
- Real-world student projects generate measurable climate impact (waste reduction, biodiversity restoration, energy savings, etc.), empower students and show that applied, purposeful learning is inspiring and engaging for all students. Project Earth is totally inclusive!

The showcase for 2026 – Pitch for the Planet 2026

We are hosting a major international showcase at the Royal Institution on 26 June 2026. It will bring together 300 students in person and thousands virtually. It provides a platform for the next generation of climate leaders and innovators, linking them with experts, advisors and investors. We aim to have such a showcase each year and also to showcase work on our website.

The deadline to submit projects for Pitch for the Planet 2026 is **2nd April 2026**. Join and [submit your project here!](#) <<

Acknowledgements

Thanks to all the advisors, supporters and students for their phenomenal work to help make Project Earth happen.

To quote Sir David Attenborough: “Seize this moment, for it will not come again”

CC-BY

Text released under the Creative Commons CC-BY license.
Images: please see individual descriptions

References

- [1] All information on Project Earth and Pitch for the planet: www.projectearth.global
- [2] Information about the Project Earth advisors: [https://www.projectearth.global/advisors/](http://www.projectearth.global/advisors/)

Resources

- Kick-start your project with the [Project Earth starter guide](#).
- Get support alongside your project in the [Project Earth guidance document](#).
- Find more resources on the [Project Earth website](#).
- Have your students make climate change predictions: Shallcross D, Harrison T (2008) [Climate change modelling in the classroom](#). *Science in School* **9**: 28–33.
- Find resources to bring the science of sustainability into the classroom: Philippsen M (2024) [Sustainability in the classroom: teaching materials from Science on Stage](#). *Science in School* **66**.
- Understand the role of the oceans in climate change: Harrison T, Khan A, Shallcross D (2017) [Climate change: why the oceans matter](#). *Science in School* **39**: 12–15.
- Read an article about the environmental effects of food packaging: Barlow C (2022) [Plastic food packaging: simply awful, or is it more complicated?](#) *Science in School* **56**.
- Discover the water footprint of different food choices: Kelly S (2020) [Do you know your water footprint?](#) *Science in School* **50**.
- Design and build a model of a flood-proof home with this Teach activity: Brown J (2015) [Beat the Flood](#). *Science in School* **32**: 47–52.
- Extract the rubber from the roots of the Russian dandelion: Göbel M, Gröger M (2018) [Turning dandelions into rubber: the road to a sustainable future](#). *Science in School* **43**: 31–36.
- Read what energy models can tell us what the future of energy looks like: Süsser D (2023) [Clean energy for all: can sun and wind power our lives?](#) *Science in School* **61**.

AUTHOR BIOGRAPHY

After a physics degree and research at the University of Chicago, **Becky Parker** taught and supported students in research projects including putting a payload in space. She developed research projects with CERN, the Wellcome Trust and others. She founded the Institute for Research in Schools in 2015. She still teaches physics and now runs Project Earth.