
Worksheet 1

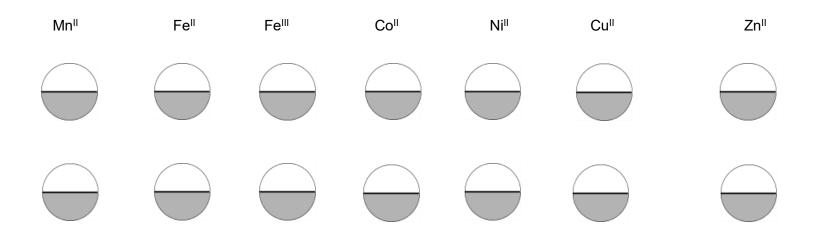
Understanding precipitates – solubility rules

Where do the components of the solutions come from?

In the small circle on the right, add some copper chloride crystals. Add waterwith a pipette to fill the whole circle and stir with a freshly cut pointed splint to dissolve the solid.	•		•	In the small circle on the left, add some anhydrous sodium carbonate. Add water with a pipette to fill the whole circle and stir with a freshly cut pointed splint to dissolve the solid.
---	---	--	---	---

With a pipette, move 2 drops of the liquid in the circle on the left into the square in the middle. With another pipette, move 2 drops of the liquid in the circle on the right into the square in the middle. Stir the contents of the square with a freshly cut pointed splint.

Worksheet 2

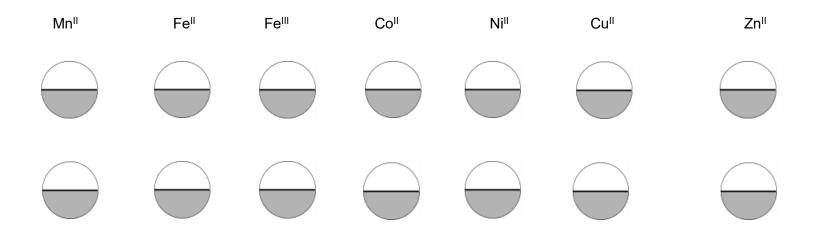

Chemistry of transition-metal ions 1 (with sodium hydroxide)

Wear eye protection

Addition of 0.4 M sodium hydroxide solution

Place 2 drops of 0.1 M salt solution in each circle across the central line.

Along the top row, add one drop of 0.4 M sodium hydroxide solution. Stir with a pointed wooden splint. Along the second row, add 6 drops of 0.4 M sodium hydroxide solution. Stir with a pointed wooden splint.


Chemistry of transition-metal ions 2 (with 2 M ammonia)

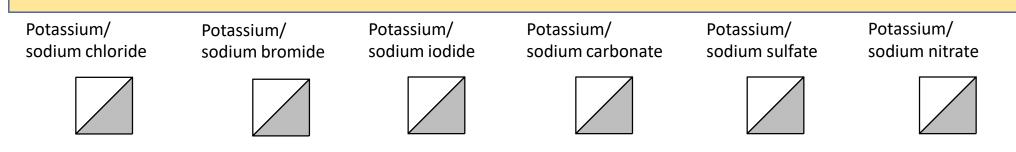
Wear eye protection
Ensure good room ventilation

Addition of 2 M ammonia solution

Place 2 drops of 0.1 M salt in each circle across the central line.

Along the top row, add 1 drop of 2 M ammonia solution. Stir with a pointed wooden splint. Along the second row, add 6 drops of 2 M ammonia solution. Stir with a pointed wooden splint.

Worksheet 4


Identification of negative ions (anions)

Use 0.1 M to 0.2 M potassium or sodium salts in the relevant squares.

Wear eye protection

Potassium/	Potassium/	Potassium/	Potassium/	Potassium/	Potassium/
sodium chloride	sodium bromide	sodium iodide	sodium carbonate	sodium sulfate	sodium nitrate

Add 2 drops of the relevant solution to each of the squares above. Add 2 drops of 0.4 M nitric acid and 1 drop of 0.05 M silver nitrate. Stir mixtures with a with a pointed wooden splint. Record observations before adding 2 drops of 2 M ammonia.

Add 2 drops of the relevant solution to each of the squares above. Add 1 drop of universal indicator solution. To any solution that is alkaline, add 1 drop off 1 M hydrochloric acid and look for bubbles of carbon dioxide.

Potassium/	Potassium/	Potassium/	Potassium/	Potassium/	Potassium/
sodium chloride	sodium bromide	sodium iodide	sodium carbonate	sodium sulfate	sodium nitrate