

Shedding light on a Picasso Intensity normalization

For each spectral band i, henceforth called 'wavelength', a standard acquisition process is followed. A white, highly reflective target is placed in front of the object. The 'white' image, *W*, is acquired. The whitetarget is removed and, keeping all settings unchanged, the acquisition of spectral image *Q* follows. With the same settings, light entrance is blocked in front of the camera and a 'black' image, *B*, is captured, corresponding to the dark current of the camera.^[1]

Intensity normalization is performed independently for each spectral image and for each pixel *x* as:

$$I_i(x) = \frac{Q_i(x) - B_i(x)}{W_i(x) - B_i(x)}$$

The procedure for image manipulation is done with the free, open-source, software ImageJ.

d Imagel	_	\times
File Edit Image Process Analyze Plugins Window Help		
	A	≫
Scrolling tool (or press space bar and drag)		

Procedure

Step 1

For each wavelength (filter), drag and drop the three image files into ImageJ (white, picture, black).

Issue 72 - April 2025

Step 2

To remove the noise (black image) from our painting, go to Process→Image Calculator. A small window will pop up.

Step 3

Image 1: the image of the painting.

Image 2: the black image.

Operation: subtract.

Click OK.

緍 Image Cal	culator X			
Image1:	510nm.bmp ~			
Operation:	Subtract ~			
Image2:	510nm_B.bmp 🗸			
✓ Create new window ✓ 32-bit (float) result				
OF	Cancel Help			

The result of this manipulation will be shown in a new window with a new image name.

Step 4

To remove noise from the white image, select again Process->Image Calculator. And in the small window, select the white image as Image 1.

💰 Image Ca	lculator X			
Image1:	510nm_W.bmp V			
Operation:	Subtract ~			
Image2:	510nm_B.bmp ~			
Create new window				
	OK Cancel Help			

The result of this manipulation will be shown in a new window with a new image name.

🛓 Imagel	_		×
File Edit Image Process Analyze Plugins Window Help			
			≫
Rectangle, rounded rect or rotated rect (alt or long click to switch)			
A Parult of \$10am When (\$0%)	_		×
1402x1076 pixels; 8-bit; 1.4MB		0	\sim
the second se			

Step 5

To get the normalized image, select again Process→Image Calculator. And in the small window, select the Result of the manipulation of the painting as Image 1 and the result of the manipulation of the white image as Image 2. As the operation, choose Divide and select the option "32-bit (float) result".

Step 6

The normalized image will pop up. You can save this image by selecting File \rightarrow Save as \rightarrow BMP. It is good practice to save all normalized images in a specific folder. You can follow these steps for each wavelength (filter) to get all normalized images.

References

[1] Zacharopoulos A et al. (2018) A method for the registration of spectral images of paintings and its evaluation. *Journal of Cultural Heritage* **29**: 10–18. doi: 10.1016/j.culher.2017.07.004